Acid-labile ATP and/or ADP/P(i) binding to the tetraprotomeric form of Na/K-ATPase accompanying catalytic phosphorylation-dephosphorylation cycle.

نویسندگان

  • T Yokoyama
  • S Kaya
  • K Abe
  • K Taniguchi
  • T Katoh
  • M Yazawa
  • Y Hayashi
  • S Mârdh
چکیده

The Na/K-ATPase has been shown to bind 1 and 0.5 mol of (32)P/mol of alpha-chain in the presence [gamma-(32)P]ATP and [alpha-(32)P]ATP, respectively, accompanied by a maximum accumulation of 0.5 mol of ADP-sensitive phosphoenzyme (NaE1P) and potassium-sensitive phosphoenzyme (E2P). The former accumulation was followed by the slow constant liberation of P(i), but the latter was accompanied with a rapid approximately 0.25 mol of acid-labile P(i) burst. The rubidium (potassium congener)-occluded enzyme (approximately 1.7 mol of rubidium/mol of alpha-chain) completely lost rubidium on the addition of sodium + magnesium. Further addition of approximately 100 microM [gamma-(32)P]ATP and [alpha-(32)P]ATP, both induced 0.5 mol of (32)P-ATP binding to the enzyme and caused accumulation of approximately 1 mol of rubidium/mol of alpha-chain, accompanied by a rapid approximately 0.5 mol of P(i) burst with no detectable phosphoenzyme under steady state conditions. Electron microscopy of rotary-shadowed soluble and membrane-bound Na/K-ATPases and an antibody-Na/K-ATPase complex, indicated the presence of tetraprotomeric structures (alphabeta)(4). These and other data suggest that Na/K-ATP hydrolysis occurs via four parallel paths, the sequential appearance of (NaE1P:E.ATP)(2), (E2P:E.ATP:E2P:E. ADP/P(i)), and (KE2:E.ADP/P(i))(2), each of which has been previously referred to as NaE1P, E2P, and KE2, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.

The phosphorylated intermediate (EP) of the Na,K-ATPase proteoliposomes (PL) prepared from the electric eel enzyme is composed of an ADP-sensitive K+-insensitive form (E1P), an ADP- and K+-sensitive form (E*P), and a K+-sensitive ADP-insensitive form (E2P). The composition of the intermediate varied with the cholesterol content of the lipid bilayer. The PL containing less than 30 mol % choleste...

متن کامل

Importance of Glu(282) in transmembrane segment M3 of the Na(+),K(+)-ATPase for control of cation interaction and conformational changes.

Glu(282) located in the NH(2)-terminal part of transmembrane helix M3 of the Na(+),K(+)-ATPase was replaced by alanine, glycine, leucine, lysine, aspartate, or glutamine, and the effects of the mutations on the overall and partial reactions of the enzyme were analyzed. The mutations affected at least 3 important functions of the Na(+),K(+)-ATPase: (i) the conformational transitions between E(1)...

متن کامل

Role of negatively charged residues in the fifth and sixth transmembrane domains of the catalytic subunit of gastric H+,K+-ATPase.

The role of six negatively charged residues located in or around the fifth and sixth transmembrane domain of the catalytic subunit of gastric H+,K+-ATPase, which are conserved in P-type ATPases, was investigated by site-directed mutagenesis of each of these residues. The acid residues were converted into their corresponding acid amides. Sf9 cells were used as the expression system using a bacul...

متن کامل

Inhibition of phosphorylation of na+,k+-ATPase by mutations causing familial hemiplegic migraine.

The neurological disorder familial hemiplegic migraine type II (FHM2) is caused by mutations in the α2-isoform of the Na(+),K(+)-ATPase. We have studied the partial reaction steps of the Na(+),K(+)-pump cycle in nine FHM2 mutants retaining overall activity at a level still compatible with cell growth. Although it is believed that the pathophysiology of FHM2 results from reduced extracellular K(...

متن کامل

Interaction of ATP with the phosphoenzyme of the Na+,K+-ATPase.

The interaction of ATP with the phosphoenzyme of Na(+),K(+)-ATPase from pig kidney, rabbit kidney, and shark rectal gland was investigated using the voltage-sensitive fluorescent probe RH421. In each case, ATP concentrations >or=100 microM caused a drop in fluorescence intensity, which, because RH421 is sensitive to the formation of enzyme in the E2P state, can be attributed to ATP binding to t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 274 45  شماره 

صفحات  -

تاریخ انتشار 1999